skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Joseph, Renuka_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract MultipleWolbachiastrains can block pathogen infection, replication and/or transmission inAedes aegyptimosquitoes under both laboratory and field conditions. However,Wolbachiaeffects on pathogens can be highly variable across systems and the factors governing this variability are not well understood. It is increasingly clear that the mosquito host is not a passive player in whichWolbachiagoverns pathogen transmission phenotypes; rather, the genetics of the host can significantly modulateWolbachia‐mediated pathogen blocking. Specifically, previous work linked variation inWolbachiapathogen blocking to polymorphisms in the mosquito alpha‐mannosidase‐2 (αMan2) gene. Here we use CRISPR‐Cas9 mutagenesis to functionally test this association. We developed αMan2 knockouts and examined effects on bothWolbachiaand virus levels, using dengue virus (DENV;Flaviviridae) and Mayaro virus (MAYV;Togaviridae).Wolbachiatitres were significantly elevated in αMan2 knockout (KO) mosquitoes, but there were complex interactions with virus infection and replication. InWolbachia‐uninfected mosquitoes, the αMan2 KO mutation was associated with decreased DENV titres, but in aWolbachia‐infected background, the αMan2 KO mutation significantly increased virus titres. In contrast, the αMan2 KO mutation significantly increased MAYV replication inWolbachia‐uninfected mosquitoes and did not affectWolbachia‐mediated virus blocking. These results demonstrate that αMan2 modulates arbovirus infection inA. aegyptimosquitoes in a pathogen‐ andWolbachia‐specific manner, and thatWolbachia‐mediated pathogen blocking is a complex phenotype dependent on the mosquito host genotype and the pathogen. These results have a significant impact for the design and use ofWolbachia‐based strategies to control vector‐borne pathogens. 
    more » « less